

Цилиндры пневматические со встроенными направляющими Серия QCT, QCB

Двустороннего действия, магнитные QCT: Ø16, 20, 25, 32, 40, 50, 63, 80 мм QCB: Ø16, 20, 25, 32, 40, 50, 63 мм

- » Монтаж магнитных датчиков с обеих сторон корпуса
- » QCT: направляющие с подшипником скольжения
- » QCB: направляющие с подшипником качения
- » Короткий срок поставки покупателю цилиндров со стандартными длинами ходов

Пневмоцилиндры с направляющими серии QC являются общеизвестной и распространенной серией цилиндров, производимых Camozzi для широкого круга применения и зарекомендовавших себя как надежное и законченное решение в станкостроении, робототехнике и мехатронике.

Пневматические цилиндры QC представляют собой модули линейного перемещения для значительных радиальных нагрузок при монтаже сложных кинематических систем с исключительно малым люфтом и монтажом на них непосредственно исполнительных устройств.

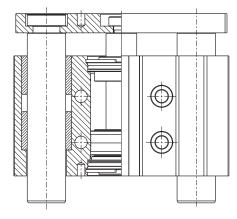
В пневмоцилиндрах QC предусмотрены монтажные отверстия для наиболее распространенных способов крепления корпуса. Цилиндры выпускаются в 2-х вариантах: с самосмазывающимся подшипником скольжения из бронзы (Мод. QCT), с линейным шариковым подшипником (Мод. QCB). Мод. QCT обладает высокой нагрузочной способностью. Мод. QCB имеет низкое трение в опорах, минимальный зазор и плавность хода.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Конструкция	компактный с направляющими QCT – направляющие с подшипником скольжения QCB – направляющие с подшипником качения					
Действие	двустороннего действия					
Материалы	корпус – анодированный алюминий; платформа – оцинкованная сталь; шток – нержавеющая сталь AISI 420B; направляющая QCT – нержавеющая сталь AISI 420B; направляющая QCB – хромированная сталь Cf53 с поверхностной закалкой; уплотнения – полиуретан					
Крепление	резьбовые и гладкие отверстия в корпусе цилиндра					
Ход (мин макс.)	10 ÷ 200 мм; более 200 мм по запросу					
Рабочая температура	-20°C ÷ 80°C					
Рабочее давление	1 ÷ 10 бар					
Рабочая среда	очищенный воздух без необходимости маслораспыления согласно ISO 8573-1:2010 [7:4:4]. Требуется установка центробежного фильтра 25 мкм, обеспечивающего класс очистки воздуха					

по стандарту ISO 8573-1:2010 [7:8:4].

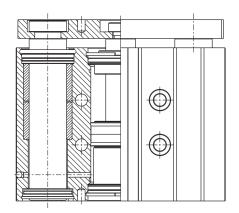
CAMOZZI Automation


ТАБЛИЦА ДОСТУПНЫХ ИСПОЛНЕНИЙ

- = QCB доступны для заказа.

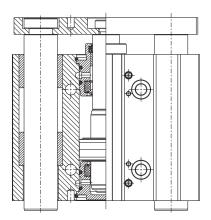
Диаметр, мм \ Исполнение	А	D	Р	S
Ø16	+ •	•	•	•
Ø20	+ •	•	*	•
Ø25	+ •	•	*	•
Ø32	+ •	•	•	•
Ø40	+ •	•	*	•
Ø50	+ •	•	*	•
Ø63	+ •	•	•	•
Ø80	*	♦	♦	♦

исполнение а


Фиксированное механическое торможение (стандарт)

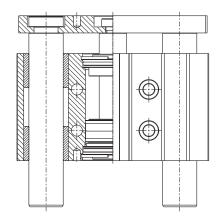
- » Шток и колонки выполнены из нержавеющей стали AISI 4208
- Направляющие с подшипником скольжения для высоких нагрузок
- » Моноблок: цилиндр и направляющие в одном корпусе

исполнение Р


Пылезащищённое исполнение

- » Закрытые колонки
- » Грязесъемники на направляющих и штоке
- » Усилие при выдвижении увеличено от 30% до 80%*, путем подачи сжатого воздуха под торец направляющих
 - * = В зависимости от диаметра

■ ИСПОЛНЕНИЕ D


Пневматическое регулируемое торможение

- Скорость перемещения поршня увеличена в 2 раза, по сравнению с версией без пневматического торможения
- » Безударная остановка поршня в крайних положениях

■ ИСПОЛНЕНИЕ S

Для повышенных радиальных нагрузок, с уменьшенным люфтом

- » Повышенное сопротивление боковым нагрузкам и высокое сопротивление моментам
- » Минимальный люфт платформы

кодировка

Q	C	T	2	Α	020	Α	050
QC	СЕРИЯ						
T	Т = поді	ИКАЦИЯ: шипник скольжения шипник качения					
2	ДЕЙСТВ 2 = двус	ИЕ: тороннего действия,	магнитные				
Α		тус – анодированный			420B; платформа – оци В) – хромированная ста		ой закалкой
020	ДИАМЕТ 016 = 10 020 = 20 025 = 25	5 мм 032 = 32 мм 0 мм 040 = 40 мм	080 = 80 MM				
Α	D = пне P = пыл		ение	андарт)			
050	длина	ХОДА, мм					

СКОРОСТЬ ХОДА ПОРШНЯ, ММ/С		
Ø, мм \ Исполнение	Исполнение A / Исполнение P / Исполнение S	Исполнение D
Ø 16 - 80	50 ÷ 500	50 ÷ 1000

УСИЛИЯ НА ПЛАТФОРМЕ ЦИЛИНДРОВ ДВУСТОРОННЕГО ДЕЙСТВИЯ СЕРИИ ОСТ, ОСВ

Усилия на штоке при прямом рабочем ходе

Значения в Ньютонах

ИСПОЛНЕНИЕ А / ИСПОЛНЕНИЕ D / ИСПОЛНЕНИЕ S											
Ø	БЕСШТОКОВАЯ		ДАВЛЕНИЕ								
ПОРШНЯ	полость	МПа (бар)									
ММ	CM ²	0,10(1)	0,20 (2)	0,30(3)	0,40 (4)	0,50 (5)	0,60 (6)	0,70 (7)	0,80 (8)	0,90 (9)	1 (10)
16	2,01	17,74	35,5	53,2	71,0	88,7	106,5	124,2	141,9	159,7	177,4
20	3,14	27,72	55,4	83,2	110,9	138,6	166,3	194,1	221,8	249,5	277,2
25	4,91	43,32	86,6	130,0	173,3	216,6	259,9	303,2	346,5	389,9	433,2
32	8,04	70,97	141,9	212,9	283,9	354,9	425,8	496,8	567,8	638,7	709,7
40	12,56	110,89	221,8	332,7	443,6	554,5	665,4	776,2	887,1	998,0	1108,9
50	19,63	173,27	346,5	519,8	693,1	866,3	1039,6	1212,9	1386,2	1559,4	1732,7
63	31,16	275,08	550,2	825,2	1100,3	1375,4	1650,5	1925,6	2200,7	2475,7	2750,8
80	50,27	443,57	887,1	1330,7	1774,3	2217,8	2661,4	3105,0	3548,6	3992,1	4435,7

ИСПОЛНЕНИЕ Р											
Ø	БЕСШТОКОВАЯ					ДАВЛ	ЕНИЕ				
ПОРШНЯ	полость	МПа (бар)									
ММ	CM ²	0,10(1)	0,20(2)	0,30(3)	0,40 (4)	0,50 (5)	0,60 (6)	0,70 (7)	0,80 (8)	0,90 (9)	1 (10)
16	3,59	31,6	63,3	94,8	126,4	158,1	189,7	221,2	252,7	284,5	316
20	5,40	47,68	95,4	143	190,7	238,4	286,1	333,9	381,4	429,1	476,8
25	8,93	78,8	157,6	236,4	315,3	394	472,9	551,6	630,3	709,3	788,1
32	14,32	126,41	252,7	379,3	505,7	632,1	758,4	885	1011,4	1137,7	1264,1
40	18,84	166,33	332,6	499,1	665,4	831,7	998	1164,4	1330,7	1497	1663,3
50	29,45	259,91	519,7	779,8	1039,7	1299,5	1559,4	1819,3	2079,2	2339,2	2599,3
63	40,98	361,72	723,4	1085,2	1446,9	1808,6	2170,3	2532	2893,7	3255,5	3617,4

Усилия на штоке при обратном ходе

Значения в Ньютонах

исполнени	ИСПОЛНЕНИЕ А / ИСПОЛНЕНИЕ D / ИСПОЛНЕНИЕ Р / ИСПОЛНЕНИЕ S											
Ø	Ø	ШТОКОВАЯ		ДАВЛЕНИЕ								
ПОРШНЯ	ШТОКА	полость	МПа (бар)									
ММ	ММ	CM ²	0,10(1)	0,20 (2)	0,30(3)	0,40 (4)	0,50 (5)	0,60 (6)	0,70 (7)	0,80 (8)	0,90 (9)	1 (10)
16	8	1,51	13,31	26,6	39,9	53,2	66,5	79,8	93,1	106,5	119,8	133,1
20	10	2,36	20,79	41,6	62,4	83,2	104,0	124,8	145,5	166,3	187,1	207,9
25	12	3,78	33,34	66,7	100,0	133,3	166,7	200,0	233,4	266,7	300,0	333,4
32	16	6,03	53,23	106,5	159,7	212,9	266,1	319,4	372,6	425,8	479,1	532,3
40	16	10,55	93,15	186,3	279,4	372,6	465,7	558,9	652,0	745,2	838,3	931,5
50	20	16,49	145,55	291,1	436,6	582,2	727,7	873,3	1018,8	1164,4	1309,9	1455,5
63	20	28,02	247,36	494,7	742,1	989,4	1236,8	1484,2	1731,5	1978,9	2226,2	2473,6
80	25	45,36	400,25	800,5	1200,8	1601,0	2001,3	2401,5	2801,8	3202,0	3602,3	4002,5

ТАБЛИЦА ЗНАЧЕНИЙ СТАНДАРТНОГО ХОДА ЦИЛИНДРОВ С МЕХАНИЧЕСКИМ ТОРМОЖЕНИЕМ

- = Поставка со склада, только для исполнения A.
- □ = Заказ на производство.

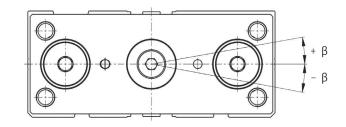
ИСПОЛНЕНИЕ А / ИСПОЛНЕ	ЕНИЕР/	исполне	ние ѕ									
Диаметр, мм \ Ход, мм	10	20	25	30	40	50	75	100	125	150	175	200
Ø16												
Ø20		•					•					
Ø25				•	•	•	•					
Ø32						•	•					
Ø40						•						
Ø50												
Ø63												
Ø80												

примечание:

Для нестандартных ходов использовать размеры на чертеже, соответствующие ближайшему большему стандартному ходу из таблицы. ПРИМЕР: для пневмоцилиндра с ходом 120 мм, необходимо выбрать размеры на чертеже, соответствующие пневмоцилиндру с ходом 125 мм; 105 мм (> 100 мм), то размеры также будут соответствовать цилиндру с ходом 125 мм. Ход более 200 мм по запросу.

ТАБЛИЦА ЗНАЧЕНИЙ СТАНДАРТНОГО ХОДА ЦИЛИНДРОВ С ПНЕВМАТИЧЕСКИМ ТОРМОЖЕНИЕМ

🗆 = Заказ на производство.


ИСПОЛНЕНИЕ D								
Диаметр, мм \ Ход, мм	25	50	75	100	125	150	175	200
Ø16								
Ø20								
Ø25								
Ø32								
Ø40								
Ø50								
Ø63								
Ø80								

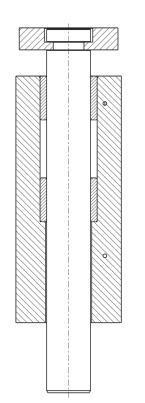
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Угловой люфт β платформы из-за зазора в опорах скольжения во втянутом положении, без нагрузки

	угловой люфт β, °						
Ø, mm	QCT	QCB					
16	±0,05	±0,05					
20	±0,08	±0,07					
25	±0,07	±0,06					
32	±0,06	±0,05					
40	±0,05	±0,05					
50	±0,04	±0,04					
63	±0,04	±0,04					
80	±0,03	-					

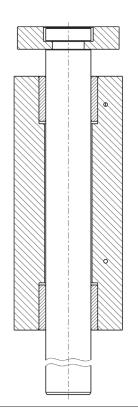
Максимальный зазор в опорах скольжения, без нагрузки

	3A30)Р, мм
Ø, mm	QCT	QCB
16	0,04	0,04
20	0,08	0,06
25	0,08	0,06
32	0,08	0,06
40	0,08	0,06
50	0,08	0,06
63	0,08	0,06
80	0,09	-

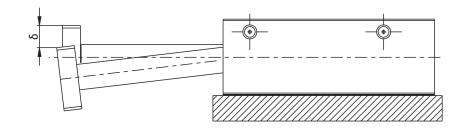

Расположение опор скольжения

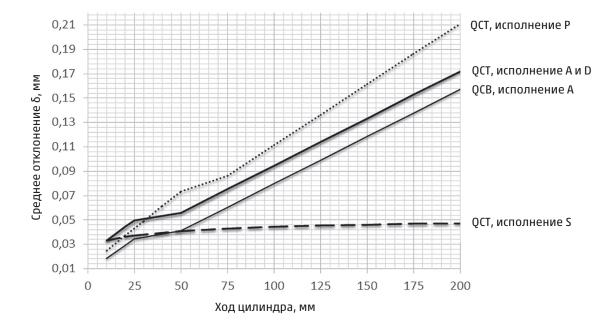
ИСПОЛНЕНИЕ А / ИСПОЛНЕНИЕ D / ИСПОЛНЕНИЕ Р

Ø16	Ход 10-40 мм
Ø20, 25	Ход 20-50 мм
Ø32, 40, 80	Ход 25 мм


Ø16	Ход 50-200 мм
Ø20, 25	Ход 75-200 мм
Ø32, 40, 80	Ход 50-200 мм
Ø50, 63	Ход 25-200 мм

исполнение s


Ø16	Ход 10-200 мм
Ø20, 25	Ход 20-200 мм
Ø32, 40, 50, 63	Ход 25-200 мм

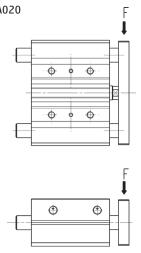


CAMOZZI

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Среднее отклонение платформы из-за зазора в опорах скольжения как функция хода, без нагрузки

РЕМКОМПЛЕКТЫ


_	.,		
Диаметр поршня, мм	Кодировка ремкомплекта	Состав ремкомплекта	
20	K02-QC20	Кольцо уплотнения поршня – 1 шт.	
25	K02-QC25	Кольцо уплотнения крышки – 2 шт.	
32	K02-QC32	Манжета поршня – 2 шт.	
40	K02-QC40	Манжета штока – 1 шт.	
50	K02-QC50		
63	K02-QC63		

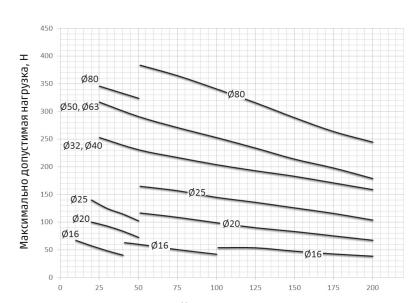


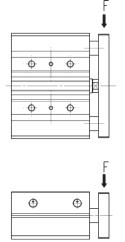
ТАБЛИЦА МАКСИМАЛЬНО ДОПУСТИМОЙ НАГРУЗКИ (F)

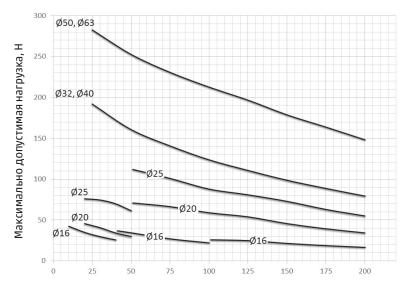
Серия QCT - ИСПОЛНЕНИЕ А / ИСПОЛНЕНИЕ D

F (H) 1Н = 0.102 кгс Пример: QCT2A025A020 F = 140 H

Значения в Ньютонах

Ход цилиндра, мм


ход												
	10	70	25	7.0		F.0	7.5	100	125	150	175	200
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	67	57	-	48	41	62	51	41	54	48	42	38
20	-	100	-	93	84	73	109	99	90	83	75	67
25	-	140	-	125	115	103	157	145	136	126	116	104
32	-	-	253	-	-	231	217	204	193	183	171	159
40	-	-	254	-	-	231	217	204	193	183	171	159
50	-	-	317	-	-	291	271	253	234	214	198	179
63	-	-	318	-	-	291	271	253	234	214	198	179
80	-	-	346	-	-	324	365	341	316	289	264	245

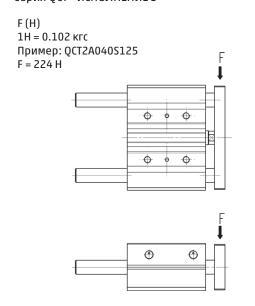

Серия QCT - ИСПОЛНЕНИЕ Р

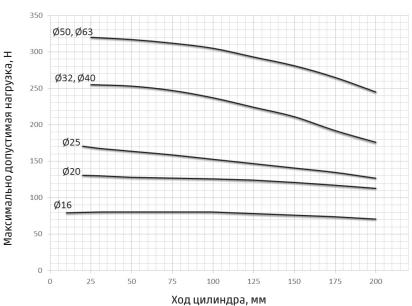
F (H) 1Н = 0.102 кгс

Пример: QCT2A032P025

F = 192 H

Значения в Ньютонах


Ход цилиндра, мм

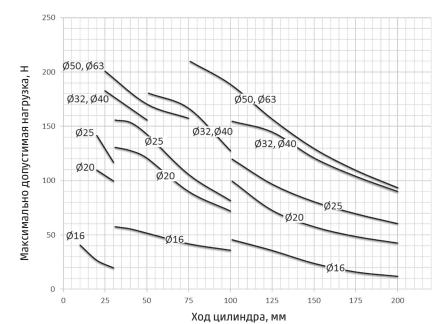

ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	43	35	-	30	26	34	27	22	25	22	19	17
20	-	46	-	41	34	30	66	59	54	46	39	34
25	-	76	-	75	70	61	101	88	83	73	63	55
32	-	-	192	-	-	161	141	124	111	99	89	80
40	-	-	192	-	-	161	141	124	111	99	89	80
50	-	-	283	-	-	253	231	213	197	179	164	148
63	-	-	284	-	-	253	231	213	197	179	164	148

CAMOZZI

ТАБЛИЦА МАКСИМАЛЬНО ДОПУСТИМОЙ НАГРУЗКИ (F)

Серия QCT - ИСПОЛНЕНИЕ S





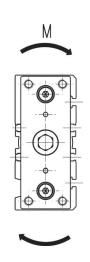
Значения в Ньютонах

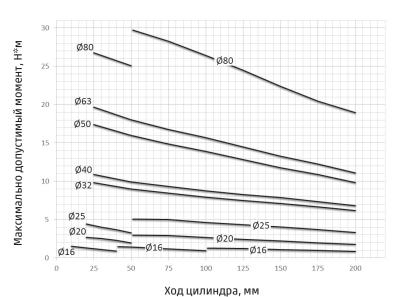
ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	79	80	-	80	81	81	81	80	78	76	74	71
20	-	131	-	130	129	128	127	126	124	121	117	113
25	-	171	-	168	166	164	159	153	147	141	135	127
32	-	-	255	-	-	253	247	237	224	211	192	176
40	-	-	256	-	-	253	247	237	224	211	192	176
50	-	-	319	-	-	317	312	305	293	281	265	245
63	-	-	320	-	-	317	312	305	293	281	265	245

Серия QCB

Значения в Ньютонах

ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	41	27	-	20	56	52	42	36	36	24	16	12
20	-	110	-	100	128	121	90	72	73	58	49	43
25	-	142	-	117	154	143	106	82	97	81	70	61
32	-	-	183	-	-	156	167	128	145	121	104	90
40	-	-	183	-	-	156	167	128	145	121	104	90
50	-	-	201	-	-	171	158	189	157	130	111	94
63	-	-	201	-	-	171	158	189	157	130	111	94

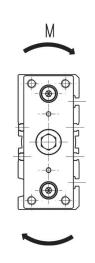

ТАБЛИЦА МАКСИМАЛЬНО ДОПУСТИМОГО КРУТЯЩЕГО МОМЕНТА (М)

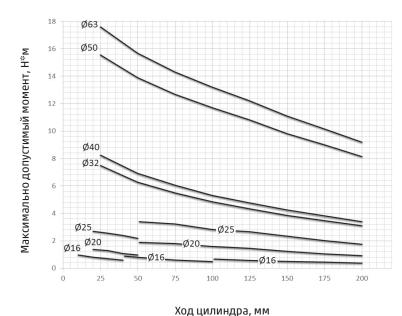

Серия QCT - ИСПОЛНЕНИЕ A / ИСПОЛНЕНИЕ D

M (H*M)

1H*м = 0,102 кгс*м Пример: QCT2A025A020

M = 4.5 H*M



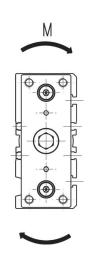

Значения в Н*м

ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	1,5	1,3	-	1,1	0,9	1,4	1,2	1,0	1,2	1,1	1,0	0,9
20	-	2,7	-	2,5	2,3	2,0	2,9	2,7	2,4	2,2	2,0	1,8
25	-	4,5	-	4,0	3,7	3,3	5,0	4,6	4,4	4,0	3,7	3,3
32	-	-	9,9	-	-	9,0	8,5	8,0	7,5	7,1	6,7	6,2
40	-	-	10,9	-	-	9,9	9,3	8,8	8,3	7,9	7,4	6,8
50	-	-	17,4	-	-	16,0	14,9	13,9	12,9	11,8	10,9	9,8
63	-	-	19,7	-	-	18,0	16,8	15,7	14,5	13,3	12,3	11,1
80	-	-	26.8	-	-	25.1	28.3	26.4	24.5	22.4	20.5	19.0

Серия QCT - ИСПОЛНЕНИЕ Р

М (Н*м) 1H*м = 0,102 кгс*м Пример: QCT2A032P025 М = 7,5 H*м

Значения в Н*м


3110 10												
ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	1,0	0,8	-	0,7	0,6	0,8	0,6	0,5	0,6	0,5	0,4	0,4
20	-	1,2	-	1,1	0,9	0,8	1,8	1,6	1,5	1,2	1,1	0,9
25	-	2,4	-	2,4	2,2	2,0	3,2	2,8	2,7	2,3	2,0	1,8
32	-	-	7,5	-	-	6,3	5,5	4,8	4,3	3,9	3,5	3,1
40	-	-	8,3	-	-	6,9	6,1	5,3	4,8	4,3	3,8	3,4
50	-	-	15,6	-	-	13,9	12,7	11,7	10,8	9,8	9,0	8,2
63	-	-	17,6	-	-	15,7	14,3	13,2	12,2	11,1	10,2	9,2

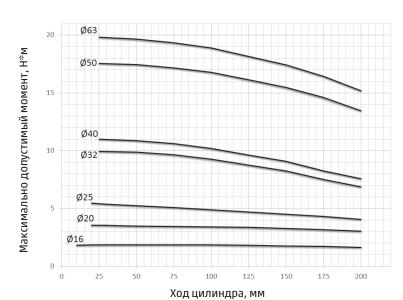
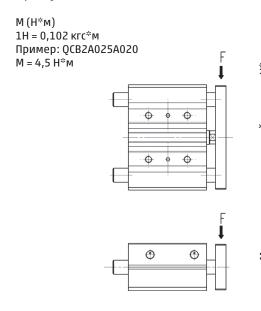
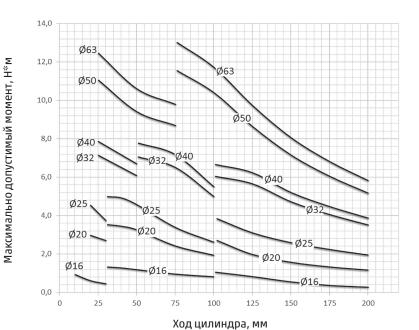

CAMOZZI

ТАБЛИЦА МАКСИМАЛЬНО ДОПУСТИМОГО КРУТЯЩЕГО МОМЕНТА (М)

Серия ОСТ - Исполнение s

M (H*м) 1H*м = 0,102 кгс*м Пример: QCT2A040S125 M = 9,6 H*м





Значения в Н*м

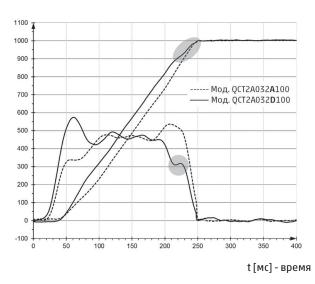
ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	1,8	1,8	-	1,8	1,9	1,9	1,9	1,9	1,8	1,7	1,7	1,6
20	-	3,5	-	3,5	3,5	3,5	3,4	3,4	3,3	3,3	3,2	3,1
25	-	5,5	-	5,4	5,3	5,2	5,1	4,9	4,7	4,5	4,3	4,1
32	-	-	9,9	-	-	9,9	9,6	9,2	8,7	8,2	7,5	6,9
40	-	-	11,0	-	-	10,9	10,6	10,2	9,6	9,1	8,3	7,6
50	-	-	17,5	-	-	17,4	17,2	16,8	16,1	15,5	14,6	13,5
63	-	-	19,8	-	-	19,7	19,3	18,9	18,2	17,4	16,4	15,2

Серия QCB

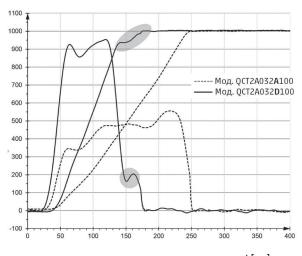
Значения в Н*м

ארטחכ	спиль п	1										
ход												
Ø	10	20	25	30	40	50	75	100	125	150	175	200
16	0,9	0,6	-	0,5	1,3	1,2	1,0	0,8	0,8	0,6	0,4	0,3
20	-	3,0	-	2,7	3,5	3,3	2,4	1,9	2,0	1,6	1,3	1,2
25	-	4,5	-	3,7	4,9	4,6	3,4	2,6	3,1	2,6	2,2	2,0
32	-	-	7,1	-	-	6,1	6,5	5,0	5,7	4,7	4,1	3,5
40	-	-	7,9	-	-	6,7	7,2	5,5	6,2	5,2	4,5	3,9
50	-	-	11,1	-	-	9,4	8,7	10,4	8,6	7,2	6,1	5,2
63	-	-	12,5	-	-	10,6	9,8	11,7	9,7	8,1	6,8	5,8

ДЕМОНСТРАЦИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ПНЕВМАТИЧЕСКОЙ СИСТЕМЫ ТОРМОЖЕНИЯ


На примере цилиндров Серии ОСТ с диаметром поршня 32 мм и длиной рабочего хода 100 мм

Мод. QCT2A032**A**100 с системой механического торможения Мод. QCT2A032**D**100 с системой пневматического регулируемого торможения


Графики изменения координаты и скорости движения цилиндров от времени. Получены экспериментально.

Холостой ход

X(t) x 10 [мм] - координата; V (t) [мм/c] - скорость

X(t) x 10 [мм] - координата; V(t) [мм/c] - скорость

t [мс] - время

Скорость 400-500 мм/с.

QCT2A032**A**100: Система механического торможения сглаживает восприятие эффекта удара поршня в крышку цилиндра.

QCT2A032D100: Система пневматического торможения легко настраиваема и работает эффективно.

Время переходного процесса одинаково.

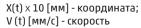
Скорость максимальная для цилиндров.

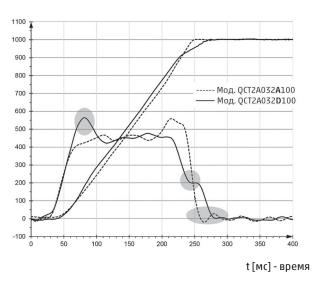
QCT2A032A100: Пропускная способность воздушных портов цилиндра конструктивно ограничена. Такое решение позволяет избежать разрушения цилиндра: в конце хода высокая кинетическая энергия цилиндра преобразуется в энергию удара поршня в крышку цилиндра или энергию удара объекта перемещения в неподвижную часть станка.

QCT2A032D100: Максимальная скорость перемещения достигает 1 м/с. Система пневматического торможения легко настраиваема и работает эффективно.

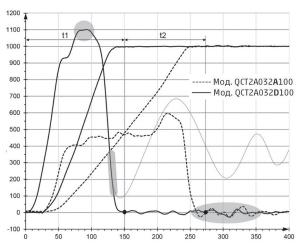
Прирост производительности цилиндра и технологического оборудования, в составе которого он установлен, – более 50%.

ДЕМОНСТРАЦИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ПНЕВМАТИЧЕСКОЙ СИСТЕМЫ ТОРМОЖЕНИЯ


На примере цилиндров Серии ОСТ с диаметром поршня 32 мм и длиной рабочего хода 100 мм


Мод. QCT2A032**A**100 с системой механического торможения

Мод. QCT2A032D100 с системой пневматического регулируемого торможения


Графики изменения координаты и скорости движения цилиндров от времени. Получены экспериментально.

Инерционная масса объекта управления - 5 кг

X(t) x 10 [мм] - координата; V(t) [мм/c] - скорость

t[мс]-время

Скорость 400-500 мм/с.

QCT2A032**A**100: За счет механической системы торможения в конце хода наблюдается небольшой упругий отскок: видны колебания скорости, слышен глухой удар поршня в крышку.

QCT2A032D100: Высокий расход воздуха, наполняющий бесштоковую полость цилиндра, и инерционная масса являются возмущением в системе для выдвижения поршня со штоком и рождают перерегулирование по скорости. Далее за счет дросселирования в выхлопной полости скорость выходит на установившееся значение.

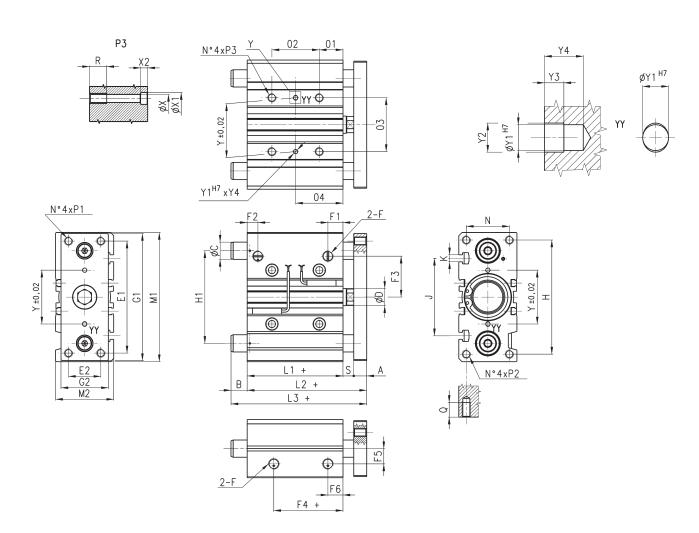
Система пневматического торможения легко настраиваема и работает эффективно.

Скорость максимальная для цилиндров.

QCT2A032**A**100: Скорость ограничена, слышен глухой удар поршня в крышку, скорость меняет знак в конце хода.

QCT2A032D100: При отсутствии дросселирования на выхлопе и при перемещении инерционных масс скорость цилиндра изменяется по гармоническому закону. Характер колебаний – затухающий. Эта колебательность показана тонкими линиями и была бы справедлива при большей длине рабочего хода. При небольших длинах ходов систему можно настроить так, чтобы половину рабочего хода скорость росла и половину спадала.

Система пневматического торможения может быть настроена таким образом, чтобы исключить восходящий тренд второго возможного колебания скорости, решая задачу плавного затормаживания до нулевой скорости без отскоков и ударов.


Прирост производительности цилиндра и технологического оборудования, в составе которого он установлен, – до 100%.

Исполнение А

Размер 02 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63	Ø 80	Размер 04 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63	Ø 80
10 ÷ 30	24	24	24	24	24	24	28	28	10 ÷ 30	17	29	29	33	34	36	38	47,5
40 ÷ 100	44	44	44	48	48	48	52	52	40 ÷ 100	27	39	39	45	46	48	50	59,5
125 ÷ 200	110	120	120	124	124	124	128	128	125 ÷ 200	60	77	77	83	84	86	88	97,5

ТРИМЕЧАНИЕ:

Цилиндры серии QC диаметром 16 мм используются только с магнитными датчиками положения серии CSH. Цилиндры серии QC прочих диаметров могут использоваться как с датчиками серии CST, так и с датчиками CSH.

+ = добавить ход

К* = размер Т-болта

Р	АЗМ	ЕРЫ																																			
Ø	Α	ØD	E1	E2	F	F1	F2	F3	F4+	F5	F6	G1	G2	Н	Н1	L1+	L2+	М1	M2	N	01	03	P1/P2	Р3	Q	R	S	Υ	Y1	Y2	Y3	Y4	Х	X1	X2	J	K≉
16	7	8	54	16	M5	10,5	7,5	19	13	10	10,5	62	25	56	46	33	46	64	30	22	5	24	M5x0,8	M5x0,8	12	10	6	24	3	3,5	3	6	4,3	8	4,5		-
20	8	10	70	18	G1/8	10,5	10,5	25	12,5	10,5	10,5	81	30	72	54	37	53	83	36	24	17	28	M5x0,8	M6x1	13	12	8	28	3	3,5	3	6	5,5	9,5	5	44	M5
25	8	12	78	26	G1/8	11,5	9	28,5	12,5	13,5	11,5	91	40	82	64	37,5	53,5	93	42	30	17	34	M6x1	M6x1	15	12	8	34	4	4,5	3	6	5,5	9,5	5	50	M5
32	10	16	96	30	G1/8	9,5	9,5	34	7	16,5	12,5	110	45	98	78	37,5	59,5	112	48	34	21	42	M8x1,25	M8x1,25	20	16	12	42	4	4,5	3	6	6,5	11	6,5	63	М6
40	10	16	104	30	G1/8	13	12	38	13	19,5	13	118	45	106	86	44	66	120	54	40	22	50	M8x1,25	M8x1,25	20	16	12	50	4	4,5	3	6	6,5	11	6,5	72	M6
50	12	20	130	40	G1/4	11,5	11,5	47	8	21,5	12	146	60	130	110	44	72	148	64	46	24	66	M10x1,5	M10x1,5	22	20	16	66	5	6	4	8	8,5	14	8,5	92	M8
63	12	20	130	50	G1/4	12,5	11,4	55	12	26	14,5	158	70	142	124	49	77	162	78	58	24	80	M10x1,5	M10x1,5	22	20	16	80	5	6	4	8	8,5	14	8,5	110	M10
80	16	25	174	52	G3/8	17	16,5	74	19	28	17	198	75	180	155	62	96,5	202	92	54	33,5	100	M12x1,75	M12x1,75	25	24	18,5	100	6	7	5	10	10,5	18	10,5	-	-

C₹

ЗНАЧЕНИЯ РАЗМЕРОВ ДЛЯ МОД. QCB

Общая длина (L3), вылет (B) и Ø направляющих (C) Размеры L3 и В изменяются в зависимости от хода Мод. QCB

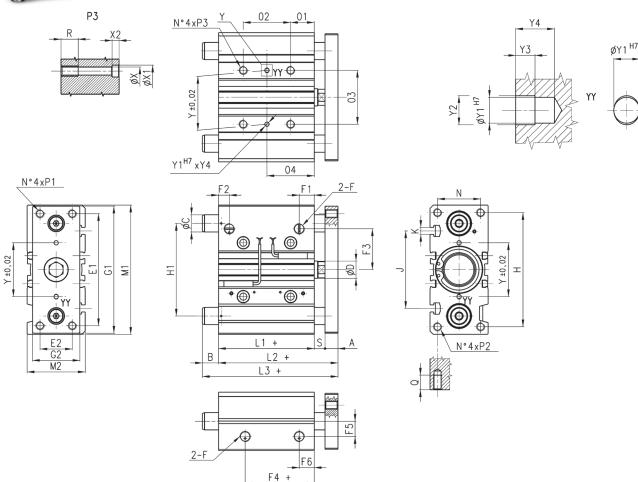
PA3M	ЛЕРЫ					
Ø	Размер L3	Размер L3	Размер В	Размер В	Размер В	Размер С
	(для хода 40-100 мм)	(для хода 125-200 мм)	(для хода 10-30 мм)	(для хода 40-100 мм)	(для хода 125-200 мм)	(Ø)
16	65	95	-	19	49	8

P	АЗМЕРЫ														
Ø	Размер L3 (для хода 20-30 мм)	Размер L3 (для хода 25-50 мм)	Размер L3 (для хода 25-75 мм)	Размер L3 (для хода 40-100 мм)	Размер L3 (для хода 75-100 мм)	Размер L3 (для хода 100-200 мм)	Размер L3 (для хода 125-200 мм)				Размер В (для хода 40-100 мм)	Размер В (для хода 75-100 мм)	Размер В (для хода 100-200 мм)	Размер В (для хода 125-200 мм)	Размер С (Ø)
20	72	-	-	75	-	-	85	19	-	-	22	-	-	32	10
25	74,5	-	-	85,5	-	-	98	21	-	-	32	-	-	44,5	12
32	-	86	-	-	95	-	110	-	26,5	-	-	35,5	-	50,5	16
40	-	86	-	-	95	-	110	-	20	-	-	29	-	44	16
50	-	-	93	-	-	112	-	-	-	21	-	-	40	-	20
63	-	-	93	-	-	112	-	-	-	16	-	-	35	-	20

ЗНАЧЕНИЯ РАЗМЕРОВ ДЛЯ МОД. QCT

Общая длина (L3), вылет (B) и Ø направляющих (C) Размеры L3 и В изменяются в зависимости от хода Мод. QCT

PA3M	ЛЕРЫ					
Ø	Размер L3 (для хода 50-100 мм)	Размер L3 (для хода 125-200 мм)	Размер В (для хода 10-40 мм)	Размер В (для хода 50-100 мм)	Размер В (для хода 125-200 мм)	Размер C (Ø)
16	64,5	92,5	-	18,5	46,5	10


	РАЗМЕРЫ														
Ø	Размер L3 (для хода 20-50 мм)	Размер L3 (для хода 20 мм)	Размер L3 (для хода 25 мм)	Размер L3 (для хода 30-50 мм)	Размер L3 (для хода 25-200 мм)	Размер L3 (для хода 75-200 мм)	Размер L3 (для хода 50-200 мм)	Размер В (для хода 20-50 мм)	Размер В (для хода 20 мм)	Размер В (для хода 25 мм)	Размер В (для хода 30-50 мм)	Размер В (для хода 25-200 мм)	Размер В (для хода 75-200 мм)	Размер В (для хода 50-200 мм)	Размер C (Ø)
20	74,5	-	-	-	-	79,5	-	21,5	-	-	-	-	26,5	-	12
25	-	74,5	-	80,5	-	85	-	-	21	-	27	-	31,5	-	16
32	-	-	73,5	-	-	-	91,5	-	-	14	-	-	-	32	20
40	-	-	73,5	-	-	-	91,5	-	-	7,5	-	-	-	25,5	20
50	-	-	-	-	98,5	-	-	-	-	-	-	26,5	-	-	25
63	-	-	-	-	98,5	-	-	-	-	-	-	21,5	-	-	25
80	-	-	117,5	138,5	-	168,5	-	-	-	21	42	-	72	-	32

Исполнение D

РАЗМЕРЫ															
Размер 02 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63	Размер 04 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63
25 ÷ 95	44	44	44	48	48	48	52	25 ÷ 95	27	39	39	45	46	48	50
100 ÷ 195	110	120	120	124	124	124	128	100 ÷ 195	60	77	77	83	84	86	88
200	200	200	200	200	200	200	200	200	105	117	117	121	122	124	124

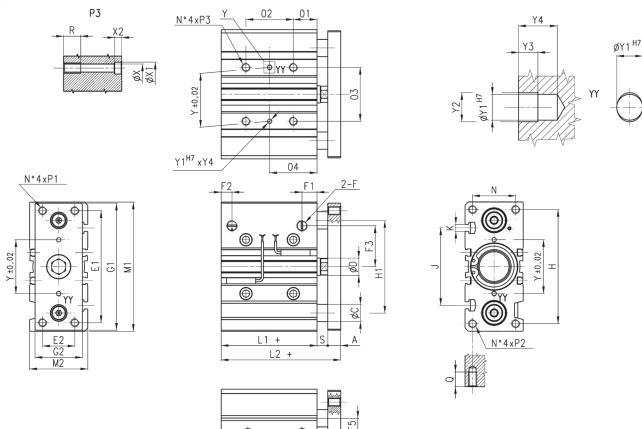
примечание:

Цилиндры серии QC диаметром 16 мм используются только с магнитными датчиками положения серии CSH. Цилиндры серии QC прочих диаметров могут использоваться как с датчиками серии CST, так и с датчиками CSH.

+ = добавить ход

К* = размер Т-болта

PA	зме	РЫ																																				
Ø	Α	ØC	ØD	E1	E2	F	F1	F2	F3	F4+	F5	F6	G1	G2	Н	Н1	L1+	L2+	М1	М2	N	01	03	P1/P2	Р3	Q	R	S	Υ	Y1	Y2	Y3	Y4	Х	Х1	X2	J	K≉
16	7	10	8	54	16	M5	10,5	7,5	19	13	10	10,5	62	25	56	46	58	71	64	30	22	5	24	M5x0,8	M5x0,8	12	10	6	24	3	3,5	3	6	4,3	8	4,5	-	-
20	8	12	10	70	18	G1/8	10,5	10,5	25	12,5	10,5	10,5	81	30	72	54	62	78	83	36	24	17	28	M5x0,8	M6x1	13	12	8	28	3	3,5	3	6	5,5	9,5	5	44	M5
25	8	16	12	78	26	G1/8	11,5	9	28,5	12,5	13,5	11,5	91	40	82	64	62,5	78,5	93	42	30	17	34	M6x1	M6x1	15	12	8	34	4	4,5	3	6	5,5	9,5	5	50	M5
32	10	20	16	96	30	G1/8	9,5	9,5	34	7	16,5	12,5	110	45	98	78	62,5	84,5	112	48	34	21	42	M8x1,25	M8x1,25	20	16	12	42	4	4,5	3	6	6,5	11	6,5	63	M6
40	10	20	16	104	30	G1/8	13	12	38	13	19,5	13	118	45	106	86	69	91	120	54	40	22	50	M8x1,25	M8x1,25	20	16	12	50	4	4,5	3	6	6,5	11	6,5	72	M6
50	12	25	20	130	40	G1/4	11,5	11,5	47	8	21,5	12	146	60	130	110	69	97	148	64	46	24	66	M10x1,5	M10x1,5	22	20	16	66	5	6	4	8	8,5	14	8,5	92	M8
63	12	25	20	130	50	G1/4	12,5	11,4	55	12	26	14,5	158	70	142	124	74	102	162	78	58	24	80	M10x1,5	M10x1,5	22	20	16	80	5	6	4	8	8,5	14	8,5	110	M10


PA3MEP	РЫ					
Ø	Размер L3 (для хода 25-100 мм)	Размер L3 (для хода 105-200 мм)	Размер L3 (для хода 25-200 мм)	Размер В (для хода 25-100 мм)	Размер В (для хода 105-200 мм)	Размер В (для хода 25-200 мм)
16	71	89	-	0	18	-
20	-	-	78	-	-	0
25	-	-	83,5	-	-	5
32	-	-	91	-	-	6,5
40	-	-	91	-	-	0
50	-	-	98,5	-	-	1
63	-	-	102	-	-	0

CAMOZZI Automation

Исполнение Р

Размер 02 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63	Размер 04 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63
10 ÷ 30	24	24	24	24	24	24	28	10 ÷ 30	20	34	32,5	40	40,5	46	48
40 ÷ 100	44	44	44	48	48	48	52	40 ÷ 100	30	44	42,5	52	52,5	58	60
125 ÷ 200	110	120	120	124	124	124	128	125 ÷ 200	63	82	80,5	90	90,5	96	98

+ = добавить ход К* = размер Т-болта

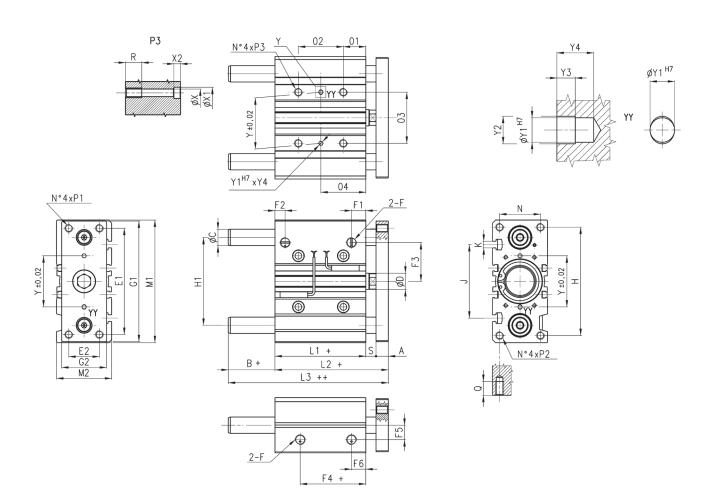
примечание:

Цилиндры серии QC диаметром 16 мм используются только с магнитными датчиками положения серии CSH. Цилиндры серии QC прочих диаметров могут использоваться как с датчиками серии CST, так и с датчиками CSH.

	PA3N	1EPE	Ы																																		
Ç	j	A (ØC	ØD	E1	E2	F	F1	F2	F3	F4+	F5	F6	G1	G2	Н	Н1	М1	М2	N	01	03	P1/P2	Р3	Q	R	S	Υ	Υ1	Y2	Y3	Y4	Χ	Х1	Х2	J	K*
1	.6	7]	10	8	54	16	M5	10,5	7,5	19	13	10	10,5	62	25	56	46	64	30	22	8	24	M5x0,8	M5x0,8	12	10	3	24	3	3,5	3	6	4,3	8	4,5	-	-
2	0	8 1	12	10	70	18	G1/8	10,5	10,5	25	12,5	10,5	10,5	81	30	72	54	83	36	24	22	28	M5x0,8	M6x1	13	12	3	28	3	3,5	3	6	5,5	9,5	5	44	M5
2	25	8 1	16	12	78	26	G1/8	11,5	9	28,5	12,5	13,5	11,5	91	40	82	64	93	42	30	20,5	34	M6x1	M6x1	15	12	4,5	34	4	4,5	3	6	5,5	9,5	5	50	M5
3	2 1	10 2	20	16	96	30	G1/8	9,5	9,5	34	7	16,5	12,5	110	45	98	78	112	48	34	28	42	M8x1,25	M8x1,25	20	16	5	42	4	4,5	3	6	6,5	11	6,5	63	М6
4	0	10 2	20	16	104	30	G1/8	13	12	38	13	19,5	13	118	45	106	86	120	54	40	28,5	50	M8x1,25	M8x1,25	20	16	5,5	50	4	4,5	3	6	6,5	11	6,5	72	M6
-	0	12 2	25	20	130	40	G1/4	11,5	11,5	47	8	21,5	12	146	60	130	110	148	64	46	34	66	M10x1,5	M10x1,5	22	20	6	66	5	6	4	8	8,5	14	8,5	92	M8
6	3 1	12 2	25	20	130	50	G1/4	12,5	11,4	55	12	26	14,5	158	70	142	124	162	78	58	34	80	M10x1,5	M10x1,5	22	20	6	80	5	6	4	8	8,5	14	8,5	110	M10

F4 +

PAS	ВМЕРЫ					
Ø	Размер L1 (для хода 10-40 мм)	Размер L1 (для хода 50-100 мм)	Размер L1 (для хода 125-200 мм)	Размер L2 (для хода 10-40 мм)	Размер L2 (для хода 50-100 мм)	Размер L2 (для хода 125-200 мм)
16	43	53	63	53	63	73


P.	АЗМЕРЫ													
Ø	Размер L1	Размер L1	Размер L1	Размер L2	Размер L2	Размер L2								
	(для хода	(для хода	(для хода	(для хода	(для хода	(для хода	(для хода	(для хода	(для хода	(для хода				
	20-50 мм)	20 мм)	25 мм)	30-50 мм)	25-200 мм)	75-200 мм)	50-200 мм)	20-50 мм)	20 мм)	25 мм)	30-50 мм)	25-200 мм)	75-200 мм)	50-200 мм)
20	47	-	-	-	-	55	-	58	-	-	-	-	66	-
25	-	47,5	-	55,5	-	58,5	-	-	60	-	68	-	71	-
32	-	-	57	-	-	-	61,5	-	-	72	-	-	-	76,5
40	-	-	56,5	-	-	-	61	-	-	72	-	-	-	76,5
50	-	-	-	-	80,5	-	-	-	-	-	-	98,5	-	-
63	-	-	-	-	80,5	-	-	-	-	-	-	98,5	-	-

Исполнение S

	16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63	Размер 04 (мм)	Ø 16	Ø 20	Ø 25	Ø 32	Ø 40	Ø 50	Ø 63
10 ÷ 30	4	24	24	24	24	24	28	10 ÷ 30	17	29	29	33	34	36	38
40 ÷ 100 44	4	44	44	48	48	48	52	40 ÷ 100	27	39	39	45	46	48	50
125 ÷ 200 11	0	120	120	124	124	124	128	125 ÷ 200	60	77	77	83	84	86	88

примечание:

Цилиндры серии QC диаметром 16 мм используются только с магнитными датчиками положения серии CSH. Цилиндры серии QC прочих диаметров могут использоваться как с датчиками серии CST, так и с датчиками CSH.

- + = добавить ход
- ++ = добавить ход дважды
- К* = размер Т-болта

PA	BME	РЫ																																						
Ø	Α	В	ØC	ØD	E1	E2	F	F1	F2	F3	F4+	F5	F6	G1	G2	Н	Н1	L1+	L2+	L3++	M1	M2	N	01	03	P1/P2	Р3	Q	R	S	Υ	Y1	Y2	Y3 '	Y4	X :	X1	X2	J	K*
16	7	1,5	10	8	54	16	M5	10,5	7,5	19	13	10	10,5	62	25	56	46	33	46	47,5	64	30	22	5	24	M5x0,8	M5x0,8	12	10	6	24	3	3,5	3	6 4	,3	8	4,5	-	-
20	8	2	12	10	70	18	G1/8	10,5	10,5	25	12,5	10,5	10,5	81	30	72	54	37	53	55	83	36	24	17	28	M5x0,8	M6x1	13	12	8	28	3	3,5	3	6 5	,5	9,5	5	44	M5
25	8	2	16	12	78	26	G1/8	11,5	9	28,5	12,5	13,5	11,5	91	40	82	64	37,5	53,5	55,5	93	42	30	17	34	M6x1	M6x1	15	12	8	34	4	4,5	3	6 5	,5 9	9,5	5	50	M5
32	10	2	20	16	96	30	G1/8	9,5	9,5	34	7	16,5	12,5	110	45	98	78	37,5	59,5	61,5	112	48	34	21	42	M8x1,25	M8x1,25	20	16	12	42	4	4,5	3	6 6	,5	11	6,5	63	M6
40	10	2	20	16	104	30	G1/8	13	12	38	13	19,5	13	118	45	106	86	44	66	68	120	54	40	22	50	M8x1,25	M8x1,25	20	16	12	50	4	4,5	3	6 6	,5	11	6,5	72	M6
50	12	1,5	25	20	130	40	G1/4	11,5	11,5	47	8	21,5	12	146	60	130	110	44	72	73,5	148	64	46	24	66	M10x1,5	M10x1,5	22	20	16	66	5	6	4	8 8	,5	14	8,5	92	M8
63	12	1,5	25	20	130	50	G1/4	12,5	11,4	55	12	26	14,5	158	70	142	124	49	77	78,5	162	78	58	24	80	M10x1,5	M10x1,5	22	20	16	80	5	6	4	8 8	,5	14	8,5	110	M10